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Abstract—In Continuous Integration, developers want to know
how well they have tested their changes. Unfortunately, in these
cases, the use of mutation testing is suboptimal since mutants
affect the entire set of program behaviours and not the changed
ones. Thus, the extent to which mutation testing can be used
to test committed changes is questionable. To deal with this
issue, we define commit-relevant mutants; a set of mutants
that affect the changed program behaviours and represent the
commit-relevant test requirements. We identify such mutants in
a controlled way, and check their relationship with traditional
mutation score (score based on the entire set of mutants or on
the mutants located on the commits). We conduct experiments
in both C and Java, using 83 commits, 2,253,610 mutants
from 25 projects. Our findings reveal that there is a relatively
weak correlation (Kendall/Pearson 0.15-0.4) between the sought
(commit-relevant) and traditional mutation scores, indicating the
need for a commit-aware test assessment metric. Our analysis
also shows that traditional mutation is far from the envisioned
case as it loses approximately 50%-60% of the commit-relevant
mutants when analysing 5-25 mutants. More importantly, our
results demonstrate that traditional mutation has approximately
30% lower chances of revealing commit-introducing faults than
commit-aware mutation testing.

I. INTRODUCTION

Modern software development involves the continuous sub-
mission and integration of code modifications from many
developers into a common codebase [1]. This continuous
development is performed by automatic procedures that build
and test the software products. Automated testing is used to es-
tablish confidence that the committed code behaves correctly,
while at the same time it does not break any of the previously
developed program functionalities.

When developers commit their code, they are interested in
testing the delta of behaviours between their pre- and post-
commit versions in order to discover issues and side effects
caused by their changes. Thus, developers are interested in
knowing how well they have tested the program behaviours
affected by their changes. To this end, many studies suggest
using mutation testing (or other test adequacy criteria) to drive
test generation, or to assess test thoroughness on the evolving
software [2], [3].

Mutation testing has long been established as one of the
strongest test criteria [4]. It operates by measuring the extent to
which test suites can distinguish the behaviour of the original
program from that of some slightly altered (syntactically
altered) program versions, which are called mutants. Testers
can use mutants to design test cases [5] or to measure test
suites’ thoroughness [6].

Previous research has shown that mutation testing leads to
fault revelation [7], [8] and can be used for test assessment as
it effectively quantifies the test suites’ strengths [6]. Unfortu-
nately, traditional mutation testing aim at testing the entire
codebase, rather than specific program changes/commits as
would naturally be requested by developers.

There are many studies aiming at making the mutation score
metric accurate either by using specific mutant types [9], or
by detecting equivalent mutants [10], [11], i.e., mutants that
cannot be killed by any test case because they are semantically
equivalent to the original program, or by eliminating redundant
mutants [12], [13], i.e., mutants that are killed “collaterally”
whenever other mutants are killed (subsumed by the subsum-
ing mutants). Yet, little research has focused on measuring the
effectiveness of test suites with respect to particular program
changes or commits.

To form a commit-aware mutation criterion, it is necessary
to identify mutants capturing the altered program behaviours,
i.e., mutants interacting with the changed program behaviours,
representing the sought commit-relevant test requirements.
These mutants can then be used to judge whether test suites
are adequate and, if not, to provide guidance in improving test
suites (by creating tests that kill commit-relevant mutants).

One may assume that, since mutation score reflects test
thoroughness (of the whole system, component or class under
test), it also reflects, or at least the score delta between versions
reflects, the extent to which changes are tested. Someone else
may consider that the changed program parts can be tested
by mutating only the modified code, assuming that mutant
locations reflect their utility and relevance.

These assumptions may appear intuitive but unfortunately
they do not hold. This is because of the large numbers of
irrelevant (to the committed changes) mutants and the many
relevant ones that are spread on the entire codebase. Since
these mutants are unknown to mutation testers, they hinder
their ability to distinguish between relevant and irrelevant
mutant kills. Mutating only the modified code parts yields
better results, but still, it is insufficient to cover all possible
interactions between the unmodified and changed code.

We argue that covering all interactions between unmodified
and modified code is particularly important because problem-
atic regression issues arise from such unforeseen interactions
[14], [15]. This is demonstrated by our results that show the
majority of the altered program behaviours to be captured by
mutants located on unmodified code parts.



In our analysis we also considered the potential gains and
losses of either using the entire set of mutants or those mutants
that are located on the committed code. Obviously, by killing
all the mutants, one achieves killing all the commit-relevant
ones. However, this comes with the cost of analysing more
mutants, and generating more test cases than needed. Perhaps
more importantly, the killing of mutants irrelevant to the
commit inflates the mutation score, hindering its ability to
reflect test thoroughness w.r.t. to committed code. Similarly,
by killing all the mutants located on the committed code, one
fails to kill a significant number of commit-relevant mutants,
loosing significant test effectiveness.

Interestingly, our results reveal that there is a relatively weak
correlation between the sought commit-aware and traditional
mutation scores, indicating the need for a commit-relevant
test assessment metric. Our analysis also shows that when
using mutants for test suite improvement [16] (by adding
tests that kill mutants), traditional mutant selection is very
far from the envisioned case, as it loses approximately 50%-
60% of the commit-relevant mutants (when analysing 5-25
mutants). Perhaps more importantly, our results demonstrate
that commit-relevant mutants have 30% more chances to reveal
faults (real faults) than traditional mutation when analysing
the same number of mutants (putting approximately the same
amount of effort).

Overall, our contribution is the definition of the commit-
relevant mutants and the envisioned commit-relevant mutation-
based test assessment. We motivate this by providing evidence
that mutation testing performed with the entire set of mutants
or with the mutants located on the committed code is insuf-
ficient to assess test thoroughness or to provide cost-effective
guidance to adequately test particular program changes.

Taken together, our key contributions can be summarised
by the following points:

• We define the commit-relevant mutation testing, which
is based on the notion of commit-relevant mutants, i.e.,
mutants capturing the interactions between modified and
unmodified code.

• We investigate the extent to which mutation-based test
assessment metrics such as a) the mutation score (score
that includes the entire set of mutants), b) the delta of
mutation scores between pre- and post-commit, c) the
mutation score of mutants located on the committed code,
correlate with the sought commit-relevant mutation score.
Our results show that all three metrics have relatively
weak correlations (less than 0.4), indicating the need for
a commit-relevant test assessment metric.

• We further examine the potential guidance given by
commit-relevant mutation testing by comparing the gains
and losses of strategies that use the entire set of mu-
tants, the mutants located on the committed code and
the commit-relevant mutants. Our findings suggest that
commit-relevant mutants have 30% higher fault revelation
ability (wrt real commit-introduced faults) than the other
strategies when analysing the same number of mutants.

II. MUTATION TESTING

A. Test Criteria and Mutation Testing

Test criteria are metrics quantifying the extent to which
systems are tested [7]. They are based on the notion of test
requirements, i.e., defining what should be tested. Depending
on which test requirements are covered by a test suite, a
test criterion defines a value that reflects how well it tests
the system w.r.t. to the intended behaviour. Test criteria have
been used to drive different aspects of the testing process,
such as test generation [17] or test selection [18]. The test
requirements are then used to decide which new tests are
needed, or which tests are redundant. Test criteria can also be
used to assess the thoroughness of a test suite, e.g. to decide
if more effort should be devoted to testing or if sufficient
confidence in the proper behaviour of the system has been
gained. Test criteria are also used to assess other criteria [12].

Mutation analysis is a test criterion [19] that measures the
capability of a test suite to detect artificial defects. Multiple
versions of the program under test, called mutants, are created,
that contain the artificial defects used as test requirements. The
ability of the test suite to differencitate the program under
test and these mutants is then measured. The artificial defects
usually take the form of small syntactic changes in the code,
such as changing “if (a > b)” into “if (a ≥ b)”.

Mutants are systematically generated, following a set of re-
placement rules called mutation operators. Different mutation
operators can be used in order to tailor the mutants created,
and thus the test requirements. This allows the tester to focus
on different aspects of the test suite. Similarly, these operators
can be applied only to specific parts of the program, should
the tester only want to focus on those.

Once mutants, i.e., test requirements, are created, the test
suite is run against the program under test and the mutants
in order to compare their behaviour. This behaviour is usually
represented by the output of the program, captured by test
or program assertions. If a test triggers different behaviours
between the original program and a mutant, the mutant is
considered to be “killed” (the test requirement represented
by this mutant is fulfilled). A test killing a mutant not only
shows that the test executed the mutant, but also that this
execution resulted in an altered state, and that this alteration
was propagated to the output of the program. If the original
program and a mutant behave the same for all tests considered,
the mutant is said to be “live”. The thoroughness of a test suite
is measured using the “Mutation Score” (MS), the ratio of
mutants killed by test suites over all killable mutants created.

B. Equivalent and Duplicated Mutants

Killing all mutants is not feasible, as some mutants are
semantically equivalent to the original program, i.e. will be-
have the same way for all possible inputs, although they are
syntactically different. These mutants are called equivalent,
while mutants for which there exists an input for which their
behaviour is different from the original program’s, are said to
be killable.



When using mutation analysis to measure the thoroughness
of a test suite, we do not want to take equivalent mutants
into consideration, as even a perfect test suite will not kill
them. Equivalent mutants have proven to be a major challenge
in the area of mutation testing [4], as identifying them is an
undecidable problem [20].

Interestingly, many killable mutants are equivalent to others,
introducing another problem, skew in the Mutation Score.
Kintis et al. [10] have shown this to be problematic and
suggest to getting rid of these “duplicated” mutants (mutants
equivalent to others).

C. Regression Mutation Testing

Applying mutation during regression testing has long been
proposed. In particular, Cachia et al. [21] proposed applying
change-based mutation testing by considering only the mutants
located on the altered code. Zhang et al. [2] proposed Re-
gression Mutation Testing, a technique that speeds up mutant
execution on evolving systems by incrementally calculating
the mutation score (and mutant status, killed/live). As such,
they assume that testers should use the entire set of mutants
when testing evolving software systems.

Existing mutation testing tools, such as Pitest [22], include
some form of incremental analysis in order to calculate the
mutation score (and mutant status, killed/live) of the entire
systems or class under test. Petrovic and Ivankovic [3] use
mutation within code review phase, by randomly picking some
mutants located on the altered code areas.

From the above discussion it should be clear that existing
techniques are either targeting the entire set of mutants or
those (or some) located on the modified code areas. In the
following we evaluate the appropriateness of this practice w.r.t.
to changed behaviours.

III. COMMIT-RELEVANT MUTANTS

Informally, a commit-aware test criterion should reflect the
extent to which test suites have tested the altered program
behaviours. This means that test suites should be capable
of testing and making observable any interaction between
the altered code and the rest of the program. We argue that
mutants can capture such interactions by considering both the
behavioural effects of the altered code on mutants’ behaviour
and visa versa. This means that mutants are relevant to a
commit when their behaviour is changed by the regression
changes. Indeed, changed behaviour indicates a coupling be-
tween mutants and regressions, suggesting relevance.

Precisely, the regression changes interact with a mutant
when the program version that includes both the regression
changes and the mutant behaves differently from:

1) the version that includes only the mutant (mutant in the
pre-commit version).

2) the version that includes only the regression changes
(post-commit version).

This situation is depicted in Figure 1.

Fig. 1. A mutant is relevant if it impacts the behaviour of the committed
code and the committed code impacts the behaviour of the mutant.

A. Demonstrating Example

Figure 2 illustrates the concept of relevant mutants. The
example function takes 2 arguments (integer arrays x and y of
size 3), sorts them, makes some computations, and outputs an
integer. The commit modification alters the statement at line
7 by changing the value assigned to the variable L from 1
to 0, denoted with the pink-highlighted line (starting with ‘-’)
for the pre-commit version and green-highlighted line (starting
with ‘+’) for the post-commit version.

The sub-figure on the left side shows mutant M1. M1

is characterized by the mutation that changes the statement
R = 2 into R = 0 in line 3 (the C language style comment
represents the mutant’s statement). We observe that, with an
input t such that t : x = {0, 3, 4}, y = {0, 2, 3}, the original
program post-commit has an output value of 1, the mutant M1

pre-commit outputs 1 and the mutant M1 post-commit outputs
0. Based on the definition of relevant mutants, M1 is relevant
to the commit modification.

The sub-figure in the center shows mutant M2 (mutation
changes the statement vR = 1 into vR = 0 in line 5). We
observe that the mutated statement (in line 5) and the mod-
ification (in line 7) are located in two mutually unreachable
nodes of the control-flow graph. Thus, no test can execute
both the changed statement and M2. M2 is not relevant to the
commit modification.

The sub-figure on the right side shows mutant M3 (mutation
changes the expression x[0] > y[2] into x[0] >= y[2] in
line 12). We observe that some tests execute both the commit
modification and the mutated statement. However, no test can
kill M3 in the post-commit version and at the same time
differentiate between the outputs of the pre-commit and post-
commit versions of mutant M3. The reason is that any test that
kills M3 in the post-commit version must fulfil the condition
x[0] == y[2]. Any such test makes both the pre- and post-
commit versions of M3 to output −1, thus, not fulfilling the
condition to be relevant. Since, there exists no such test M3

is not relevant to the commit modification.
Note that in case a modification inserts statements, all

killable mutants (in the post-commit version) located on these
statements (new statements) are relevant to the modification.
In case of deletion (modifications remove statements), the
mutations located on these statement do not exist in the post-
commit version, and thus, are not considered.



Mutant M1 (Relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2;  // R = 0;
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M2 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; // vR = 0;
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M3 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2]) // if (x[0] >= y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

No test can execute both the 
mutated statement (line 5) and the 
modification (line 7) in both pre and 

post commit versions

Any test that kills the mutant post-commit must fulfil 
the condition 𝑥𝑥 0 == 𝑦𝑦[2]. Any test that fulfil the 
above condition will make the mutant output -1 for 

pre and post commit versions. Thus no test can make 
the mutation interact with the modification.

For test input:  x = {0, 3 ,4} and y = {0, 2, 3},
the return codes are following:

• Mutant post-commit: 0
• Mutant pre-commit: 1
• Original post-commit: 1

≠
≠

Fig. 2. Example of relevant and non-relevant mutants. Mutant 1 is relevant to the committed changes. Mutants 2 and 3 are not relevant.

IV. EXPERIMENTAL SETUP

A. Research Questions

We start our analysis by recording the prevalence of
commit-relevant mutants in code commits. Thus, we ask:

RQ1: (Mutant distributions) What ratio of mutants is rele-
vant, is located on changed code, and is located on
non-changed code?

Answering this question will help us understand the extent
of “noise” included in the mutation score and will provide a
theoretical upper bound on the application cost of commit-
aware mutation testing.

As we shall show, the majority of the mutants are irrelevant
to the committed code, indicating that using all mutants
is sub-optimal in terms of application cost. Perhaps more
interestingly, using such an unbalanced set could result in a
score metric with low precision. Therefore, we need to check
the extent to which mutation score is adversely influenced by
irrelevant mutants. Thus, we investigate:

RQ2: (Metrics relation) Does the mutation score (MS),
computed based on all mutants, on mutants located
on the committed/modified code, and the delta of the
pre- and post- commit MS correlate with the relevant
mutation score (rMS)?

Knowing the level of these correlations can provide evi-
dence in support (or not) of the commit-aware assessment
(i.e., the extent to which mutation score reflects the level at
which the altered code has been tested). In particular, in case
there is a strong correlation, we can infer that the influence of
the irrelevant mutants is minor. Otherwise, the effects of the
irrelevant mutants may be distorting.

While the correlations reflect the influence of the irrelevant
mutants on the assessment metric, they do not say much about
the extent to which irrelevant mutants can lead to tests that
are relevant to the changed behaviours (in case mutants are
used as test objectives). In other words, it is possible that by
killing random mutants (the majority of which is irrelevant),
one can also kill relevant mutants. Such a situation happens

when considering the relation between mutants and faults,
where mutant killing ratios have weak correlation with fault
detection rates but killing mutants significantly improves fault
revelation [16]. Hence we ask:

RQ3: (Test selection) To what extent does the killing of
random mutants result in killing commit-relevant
mutants?

We answer this question by simulating a scenario where a
tester analyses mutants and kills them. Thus, we are interested
in the relative differences between the relevant mutation scores
when testers aim at killing relevant and random mutants. We
use the random mutant selection baseline as it achieves the
current best results [13], [23]. We compare here on a best
effort basis, i.e., the commit-relevant mutation score achieved
by putting the same level of effort, measured by the number
of mutants that require analysis. Such a simulation is typical
in mutation testing literature [8], [13] and aims at quantifying
the benefit of one mutant selection approach over another.

Answering the above question provides evidence that killing
relevant mutants yields significant advantages over the killing
of random mutants. While this is important and demonstrates
the potential of killing commit-relevant mutants in terms of
relevance, still the question of actual test effectiveness (actual
fault revelation) remains. This means that it remains unclear
what the fault revelation potential of killing commit-relevant
mutants is when the commit is fault-introducing. Therefore we
seek to investigate:

RQ4: (Fault Revelation) How does killing commit-relevant
mutants compares with the killing of random mutants
w.r.t. to (commit-introduced) fault revelation?

To answer this question we investigate the fault revelation
potential of killing commit-relevant mutants based on a set of
real fault-introducing commits. We follow the same procedure
as in the previous research question (RQ3) in order to perform
a best effort evaluation.

Overall, answering the above questions will improve the
understanding of the potential of the cost-effectiveness appli-
cation of commit-aware mutation testing.



B. Analysis Procedure
We performed mutation testing on the selected subjects

using all the mutation operators supported by Mart [24]
and Pitest [22] (the mutation testing tools we use). For the
C programs, we then discarded all the trivially equivalent
mutants (including the duplicated ones), using the TCE method
[10] and applied our analysis on the resulting sets of mutants.

Identifying relevant mutants requires excessive manual anal-
ysis, thus we approximate them based on test suites (this is
a typical experimental procedure [25], [13], [4]). To do so
we composed large test pools, which approximate the input
domain. The pools are composed of the post-commit version
developer tests (mined from the related repository). For C
programs we augment the pools with automatically generated
tests, similarly to the process followed by Kurtz et al and
Papadakis et al. [13], [4].

Using the test pools, we execute all the mutants (on both
pre- and post-commit versions) and construct the mutation
matrix that records the mutants killed by each test case of
the pool. We also record the test execution output of each test
on each mutants. For C programs, this output is the standard
output produced when running the test, while for the Java
programs it is the status (pass/fail) of the test run.

By using the test execution outputs and the mutant matrices,
we approximate the relevant mutant set, from the post-commit
mutants, based on Algorithm 1. In the algorithm, the function
calls postCommitOrigOutput, postCommitMutOutput and pre-
CommitMutOutput compute the output of the execution of test
case ‘test’ on the post-commit original program, post-commit
version of mutant ‘mut’ and pre-commit version of mutant
‘mut’, respectively.

Besides the relevant mutant set, we also extract the mod-
ification mutant set, made of mutants that are located on a
statements modified or added by the commits. This set is
computed by extracting the modified or added statements from
the commit diff and collecting the mutants that mutate those
statements. Note that, by definition, the killable modification
mutants are also relevant mutants, as their pre-commit output
is not defined, and thus different from their post-commit
output.

We have three mutant sets: the post-commit, relevant and
modification mutant sets. In RQ2, we want to know the cor-
relations between the mutation scores of the aforementioned
mutant sets. To do so, we select arbitrary test sets of various
sizes and record the mutation scores on each mutant set and
compute their correlations.

In RQ2 we arbitrary pick sets of tests representing 10%,
20%, ..., 90% of the test pool. As these sets are randomly
sampled we selected multiple sets (500 for C and 100 for
Java) per size considered and per program commit (each subset
of test can be seen as a testing scenario). For every test set,
we computed the mutation score for each of the three mutant
sets. We name as MS, rMS and mMS the mutation scores for
the whole mutant set, relevant mutant set and modification
mutant set, respectively. The mutation scores are computed
on the post-commit versions and using the mutation matrix.

Algorithm 1: Approximate Relevant Mutants Set
Data: TestSuite, Mutants
Result: Relevant Mutants
RelevantMuts← ∅;
for mut ∈Mutants do

for test ∈ TestSuite do
origV 2← postCommitOrigOutput(test);
mutV 2← postCommitMutOutput(test,mut);
mutV 1← preCommitMutOutput(test,mut);
if origV 2 6= mutV 2 ∧mutV 2 6= mutV 1 then

RelevantMuts← RelevantMuts ∪ {mut};
break;

end
end

end
return RelevantMuts ;

Thus, for each commit and each test size, we have three
statistical variables (MS, rMS and mMS), which instances are
the corresponding mutation scores for each test set.

Having collected the data for the statistical variables MS,
rMS and mMS, we compute the correlations between rMS and
MS as well as the correlation between rMS and mMS. If the
correlation between rMS and MS (mMS) is high, it means that
MS (mMS) can be used as a proxy fo rMS. Otherwise, MS
(mMS) is not a good proxy for rMS and thus, rMS should be
targeted directly.

We also computed, for each test set, the mutation score
in the pre-commit version. Then we compute the absolute
change of mutation score (named deltaMS), on the analyzed
mutant set, incurred by a commit modification (delatMS =
|MSpost−commit−MSpre−commit|), and we compute the cor-
relation between rMS and deltaMS. A strong correlation would
mean that the absolute change of mutation score between
versions is a proxy for rMS. Weak correlation would mean
that rMS cannot be represented by delatMS.

In RQ3, we simulate a scenario where a tester selects mu-
tants and designs tests to kill them. This is a typical evaluation
procedure [13], [4] where a test that kills a randomly selected
mutant (from the studied mutant set) is selected from the test
pool. This test is then used to determine the killed mutants,
which are discarded from the studied mutant set. The process
continues (by picking the next live mutant) until all mutants
have been killed. If a mutant is not killed by any of the tests,
we treat it as equivalent. This means that our effort measure
is the number of mutants picked (either killable or not) and
effectiveness measure is the relevant mutation score. Since we
perform a best-effort evaluation we focus on the initial few
mutants (up to 50) that the tester should analyse in order to
test the commits under test. We repeat this process (killing all
mutants) 100 times and compute the relevant mutation score.

For RQ4, we repeat the same procedure as in RQ3. How-
ever, instead of computing the relevant mutation score, we
compute the fault revelation probability.



C. Statistical Analysis

We perform a correlation analysis to evaluate whether the
mutation score, when considering all mutants, correlates with
the relevant mutation score. To this end, we use two correlation
metrics: Kendall rank coefficient (τ ) (Tau-a) and Pearson
product-moment correlation coefficient (r). In all cases, we
considered the 0.05 significance level.

The Kendall rank coefficient τ , measures the similarity in
the ordering of the studied scores. We measure the mutation
score MS and the relevant mutation score rMS when using
test suites of size 10%, ..., 90% of the test pools. The
Pearson product-moment correlation coefficient (r) measures
the covariance between the MS and rMS values. These two
coefficients take values from -1 to 1. A coefficient of 1, or -1,
indicates a perfect correlation while a zero coefficient denotes
the total absence of correlation.

To evaluate whether the achieved mutation scores MS and
relevant mutation scores rMS are significantly different, we
use a Mann-Whitney U Test performed at the 1% significance
level. This statistical test yields a probability called p-value
which represents the probability that the MSs and rMS are
equal. Thus, a p-value lower than 1% indicates that the two
metrics are statistically different. We use paired and two-tailed
U test, to account for the different commits and programs.

D. Program Versions Used

To answer RQs 1-3 we used the C programs of GNU
Coreutils1, used in many existing studies [26], [27], [28].
GNU Coreutils is a collection of text, file, and shell utility
programs widely used in Unix systems. The whole code-
base of Coreutils is made of approximately 60,000 lines of
C code2. In order to obtain a commit benchmark of Coreutils
programs we used to following procedure to mine recent
commits from the Coreutils github repository. (1) We set the
commit date interval from year 2012 to 2019. This resulted
in 5,000 commits considered. (2) Next, we filtered out the
commits that do not alter source code files. This resulted in
1,869 commit remaining. (3) Then, we only kept the commits
that affect only the main source file of a single program (This
enable better control of test execution, because other programs
of Coreutils are often used to setup the test execution of a
tested program). (4) After that, we filtered out commits that
are very large (commits whose modification has an edit actions
of more than 5 according to GumTree [29]). This resulted
in 218 commits. (5) Due to the large execution time of the
experiments, approx. 2 weeks of CPU time per commit, we
randomly sampled 34 commits among the remaining commits
for the experiments. This constitutes our Benchmark-1.

In order to further strengthen our experiment and answer
RQ4, we also use 13 commits from the CoREBench [30]
that introduce faults. We selected these commits to validate
the fault revelation ability of relevant mutants. Since we
approximate relevant mutants, we needed commits where

1https://www.gnu.org/software/coreutils/
2Measured with cloc (http://cloc.sourceforge.net/)

TABLE I
C TEST SUBJECTS

Benchmark #Programs #Commits # Mutants #Test cases

CoREBench [30] 6 13 154,396 8,828

Benchmark-1 13 34 338,390 11,866

TABLE II
JAVA TEST SUBJECTS

Project # Commits # Mutants # Test cases

commons-cli 9 61,419 3,247

commons-collections 5 323,584 55,076

commons-io 3 105,181 3,972

commons-net 6 345,130 1,478

joda-time 5 561,782 20,962

jsoup 8 330,125 4,985

automated tests generation frameworks could run. Thus, we
limit ourselves to the 18 fault introducing commits of Coreutils
that we can run with Shadow symbolic execution [26]. Among
these faults, two were discarded due to technical difficulties in
compiling the code (the build system uses very old versions
of the build tools). Three faults were discarded due to the
excessively high required execution time to run the mutants
(we stopped after 45 days).

Table I summarizes the informations about the C language
benchmarks used in the experiments.

To answer RQs 1-3, we also consider a set of commits
from well-known and well-tested Java programs. We extract
these commits from projects in the Apache Commons Proper
repository3, a set of reusable Java component projects, from
Joda Time4, a time and date library, and Jsoup5, an HTML
manipulation library. For each of the projects, we manually
gathered the most recent commits meeting the following
conditions from the project’s history: (1) only source code is
modified, no modification to configuration files, (2) the commit
introduces a significant change, not a trivial one such as a typo
fix, (3) test contracts are not modified, in order to meaningfully
compare pre- and post-commit outputs and (4) both pre- and
post-commit versions of the project build successfully. Overall,
we gathered 36 commits, table II summarises information
about the commits used from each project.

E. Mutation Mapping Across Versions

As mutation testing tools generate mutants for a given pro-
gram version instead of regression pairs, we need to identify
the common mutants between the two versions. In other words,
we need to map each mutant from its pre- to post-commit
version of the program.

3https://commons.apache.org/
4https://github.com/JodaOrg/joda-time/
5https://github.com/jhy/jsoup



To establish such a mapping in the case of C programs, we
unify the commit modifications into a single program, as done
in the literature [26], and apply any standard (unmodified)
mutation tool to generate the mutants. The code unification of
the commit modification is done through annotation that has
no side-effect. The annotations are made through a special
function called “change” that takes 2 arguments/values (the
arguments are the value of the pre-commit and post-commit
versions, respectively) and return one of the two values.

The annotations are manually inserted in the program,
according the semantics presented in previous studies [26].

Note that the statement insertion can be annotated by wrap-
ping the inserted statement with if(change(false, true)); and
a statement deletion can be annotated by wrapping the deleted
statement with if(change(true, false)).

The choice of the version to use, for each mutant, is
decided at runtime (by specifying the version to use through
an environment variable recognizable by the change function).

For the Java programs, we perform the mapping of mutants
from both sets of mutants and the commit diff. We first
generate the mutants for both pre- and post-commit versions
of the program using the mutation tool. We then map pre- and
post- commit line numbers by parsing the commit diff, and
use this mapping to map pre- and post-commit mutants, using
the line number, bytecode instruction number and mutation
operator of the mutants to match both sets. We adopt this way
for the Java programs in order to avoid making drastic changes
on Pitest (the mutation testing tool we use).

F. Mutation Testing Tools and Operators

As test suites are needed in our experiment, we use the
developer tests suites for all the projects that we studied. These
were approximately 4,194 tests in total for C programs.

To strengthen the test suites used in our study, we aug-
ment them in two phases. First, we use KLEE [28], with a
robust timeout of 2 hours, to perform a form of differential
testing [31] called shadow symbolic execution [26], which
generates 234 test cases. Shadow symbolic execution generates
tests that exercise the behavioural differences between two
different versions of a program, in our case the pre-commit
and the post-commit program versions.

In order to also expose behavioural difference between the
original program and the mutants, we used SEMu [27], with
a robust timeout of 2 hours, to perform test generation to kill
mutants in the post-commit program versions. SEMu generates
17,915 test cases.

These procedures resulted in large test suites of 22,343 test
cases for C programs in total. Since we compare program
versions, we use the programs output as an oracle. Thus, we
consider as distinguished or killed, every mutant that results
in different observable output than the original program.

We use Mart [24], a mutation testing tool that operates
on LLVM bitcode, to generate mutants. Mart implements
18 operators (including those supported by modern mutation
testing tools), composed of 816 transformation rules.

To reduce the influence of redundant and equivalent mu-
tants, we enabled Trivial Compiler Equivalence (TCE) [10],
[32] in Mart to detect and remove TCE equivalent and du-
plicate mutants. TCE detected 13,322 and 460,072 equivalent
and redundant mutants.

For the Java programs, we use the developper test suites
available. We perform mutation analysis using Pitest[22], a
state of the the art mutation testing tool that mutates JVM
bytecode. We use all mutation operators available in Pitest,
which are described in [33] and [34].

V. RESULTS

A. RQ1: Relevant mutant distribution

We start our analysis by examining the prevalence of
commit-relevant mutants, i.e., mutants that affect the altered
program behaviours. Figure 3 records the distribution of the
relevant and non-relevant mutants among the studied commits.
Based on these results we see that only a small portion of the
mutant population produced by the selected mutation operators
is actually relevant. This portion ranges from 0.5% to 47%,
among which 3.6% is located on the changed program lines,
while the rest is located on the rest of the code. For the large
portion, it is possible to happen when the source code is not
large, and the change is located in the crucial position.

Interestingly, the presence of so many “irrelevant” mutants,
can have major consequences when performing mutation test-
ing. Such consequences are a distorting effect on the accuracy
of the mutation score, and a waste of resources when executing
and trying to kill non-relevant to the commit mutants. We
further investigate these two points in the following sections.

B. RQ2: Relevant mutants and mutation score

Figure 4 visualizes our data; each data point represents the
mutation score and relevant mutation score of a selected test
suite. As can be seen from the scatter plots, there is no visible
pattern or trend among the data. We can also see that there is a
large variation between mutation scores and relevant mutants
scores in almost all the cases. These observations indicate
that the examined variables differ significantly. In other words,
one cannot predict/infer one variable using the other one. To
further explore the relationship between mutation score and
relevant mutation score within our data we perform statistical
correlation analysis.

Finding a strong correlation would suggest that the two
metrics have similar behaviours (an increase or decrease of one
implies a relatively similar increase or decrease of the other).
Figure 5 displays the results for the two correlation coefficients
that have statistically significant values for randomly selected
test suites (from our test suite pool) of different sizes6.
Interestingly, we observe that most of the correlations are
relatively weak with their majority ranging from 0.15 to 0.35.
Additionally, we see that both coefficients we examine are
aligned, indicating a weak relationship when either ordering
test suites or considering their score differences.

6We observe similar trends with Pearson correlation. Due to lack of space,
Pearson correlation results can be found in the accompanying website.
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Fig. 3. The distribution of killable, non-relevant, relevant outside the modification and relevant on the modification mutants among the studied commits.
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Fig. 4. The relationship between Mutation Score and Relevant Mutation Score.

One may assume that the relevant mutation score may be
well approximated by the mutants that are located on the
modified code, assuming that mutants’ location reflects their
utility and relevance. Similarly, one may assume that the
commit-relevant score could be approximated by the delta of
the pre- and post-commit mutation scores. We investigate these
cases and find that most of the correlations are relatively weak
with their majority ranging from -0.1 to 0.1.

Overall, our results indicate that irrelevant mutants have
a major influence on the mutation score calculation, and
that using the overall mutation score does not reflect the
actual value of interest, i.e., how well the altered behaviours
are tested, which is represented by relevant mutation score
(rMS). Approximating the rMS using either the deltaMS or the
mutants of the altered lines is also not sufficient. Hence, our
results suggest that MS and other direct metrics are not good
indicators of commit-related test effectiveness. We envision
that future research should develop techniques capable of
identifying relevant mutants at testing time, i.e., prior to any
test generation and mutant analysis, in order to support testers.

C. RQ3: Test Selection

Recent research has shown that mutation testing is partic-
ularly effective at improving test suites and revealing faults
(guiding testers to design test cases that reveal faults), while
at the same time mutation score is weakly correlated with fault

TABLE III
Â12 . RMS WHEN AIMING AT RELEVANT, RANDOM AND MODIFICATION

RELATED MUTANTS.

#Mutants 5 10 20 30 40 50
Relevant-Random 0.90 0.95 0.98 0.98 0.98 0.97
Relevant-Modification 0.89 0.96 0.99 0.99 0.99 0.99

detection [16]. In view of this, it is possible that despite the
weak correlations we observe in our case, traditional mutation
could successfully guide testers towards designing tests that
collaterally kill relevant mutants.

Results are recorded in Figure 6 for the first 1-50 mutants
to be analysed by the tester. We observe a large divergence
(approximately 50%-60%) between the random, commit-based
and relevant mutants. This difference is statistically significant
and with large effect size (Effect Size values are recorded on
Table III). Taking together the weak correlations we found
in the previous section with these results, we conclude that
traditional mutation testing is suboptimal and cannot be used
to assess or guide (in a best-effort basis) the testing of
committed code. Therefore, to support practitioners, future
research should aim at identifying and using commit-relevant
mutants. Similarly, controlled experiments should be based on
relevant mutants when aiming at assessing change-aware test
effectiveness.
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Fig. 5. Correlation between Mutation Score and Relevant Mutation Score for different test suite sizes on different languages.
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Fig. 6. Test suite improvement of mutation-based testing with random (traditional mutation) and relevant mutants.

TABLE IV
Â12 . FAULT REVELATION WHEN AIMING AT RELEVANT, RANDOM AND

MODIFICATION RELATED MUTANTS.

% Relevant mutants analysed 10% 20% 50% 75% 100%
Relevant-Random 0.55 0.59 0.64 0.66 0.64
Relevant-Modification 0.57 0.59 0.69 0.73 0.70

D. RQ4: Fault Revelation

To demonstrate the importance of commit-aware muta-
tion testing, we further compare the ability of the tradi-
tional mutants and commit-relevant mutants to reveal commit-
introduced faults (real faults). We follow the same procedure
as in the previous section but evaluate w.r.t. to the rate of faults
revealed by the selected test suites.

The fault revelation results are depicted in Figure 7. From
this data, we can see that a significant fault revelation dif-
ference (approximately 30-40%) between the compared ap-
proaches can be recorded. This difference is statistically sig-
nificant with large effect size (Effect Size values are recorded
on Table IV). Here it must be noted that these results can
be achieved by an effort equivalent to analysing 0.4% of the
mutants, which is 27 mutants per commit (on average).

Overall, our results demonstrate that by aiming at relevant
mutants one can achieve significant fault revelation benefits
(approximately 30%) over the traditional way of using muta-
tion testing.
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Fig. 7. Fault revelation of mutation-based testing with random (traditional
mutation) and relevant mutants.

VI. THREATS TO VALIDITY

External validity: We selected commits that do not modify
test contracts. Such commits are common in industrial CI
pipelines [35] but rare in open source projects. To mitigate
this threat, we performed our analysis on a relatively large
set of commits given the computational limits posed by
mutation analysis. In C, our experiment required on average
approximately 2 weeks of CPU time to complete, per commit
studied (executions performed using Muteria [?]). In addition,
we used an established research benchmark (CoREBench [30])
where we found similar results. Unfortunately, we consider
fault introducing commits only in C as the Java datasets do
not adhere to our non-changed test contract requirement.

Another threat may relate to the mutants we use. To reduce
this concern we used a variety of operators covering the
most frequently used language features including the operators
adopted by the modern tools [33], in both C and Java.



Internal validity: Such threats lie in the use of automated
tools, the way we treated live mutants and non-adequate test
suites. To diminish these concerns, we used KLEE, a state
of the art test generation tool and strong mature developer
test suites. Nevertheless, the current state of practice [3] relies
on non-adequate test suites, so our results should be relevant
to at least a similar level of practice. To ensure our results,
we carefully checked our implementation and performed a
manual evaluation on a sample of our results. Moreover, we
use established tools also employed by numerous studies.

To deal with randomness and minimize stochastic effects,
we repeated our experiments 100 times and used standard
statistical tests and correlations.

Construct validity: Our effort related measurement, number
of analysed mutants, essentially captures the manual effort
involved in test generation. Automated tools may reduce
this effort and change our best-effort results. Still, we used
the current standards, i.e., TCE [10] to remove all trivially
equivalent mutants before conducting any experiment and
KLEE (including a mutation-based test generation approach
[27]). In test generation, we acknowledge that automated tools
may generate test inputs that kill mutants, but we note that they
fail to generate test oracles. Therefore, even if such tools are
used, the test oracles will still require human intervention, i.e.,
introduce some effort. Here it should be noted that we consider
the mutant execution cost as negligible since it is machine time
and our focus is on the human time involved when performing
mutant analysis. Moreover, existing advances [36] promises to
reduce this cost to a practically negligible level.

Overall, we believe that our effort measurements approxi-
mate well (in relative terms) the human effort involved. All
in all, we aimed at minimizing potential threats by using
various metrics, well-known tools and benchmarks, real and
artificial faults and following methodological guidelines [4].
Additionally, to enable reproducibility and replication we
make our tools and data publicly available7.

VII. RELATED WORK

There are various methods aiming at identifying relevant
coverage-based test requirements in the literature. For instance,
it has been proposed to consider as relevant every test element
that can be affected by the changes (by doing some form of
slicing, i.e., following all control and data dependencies from
the changed code) [37], [38]. As such, these methods aim at
considering conservatively every test requirement affected by
the change, resulting in sets with a large number of irrelevant
requirements. Nevertheless, applying such an approach to
mutation testing is equivalent to mutating the sliced program.
This of course inherits all the limitations of program slicing
such as scalability and precision [39], it is conservative (results
in large number of false positives) and does not account for
equivalent mutants located on potentially infected code.

7The paper presents a subset of our results. Our data and results
are openly accessible on the following Github link: https://github.com/
relevantMutationTesting

To circumvent the problems of coverage, researchers have
proposed the propagation-based techniques [40], [15], [41],
[42], which aim at identifying the program paths that are
affected by the program changes. They rely on dependence
analysis and symbolic execution to form propagation condi-
tions and decide whether changes propagate to a user-defined
distance. Although promising, these techniques are complex
and inherit the limitations from symbolic execution.

Researchers have also investigated techniques to automat-
ically augment test suites by generating tests that trigger
program output differences [43], increase coverage [44] and
increase mutation score [45], [46]. Along the same lines
differential symbolic execution [47], KATCH [48] and Shadow
symbolic execution [26] aim at generating tests that exer-
cise the semantic differences between program versions by
incrementally searching the program path space from the
changed locations and onwards. These methods are somehow
complementary to ours as they can be used to create tests that
satisfy the commit-relevant test requirements.

Interestingly, the problem of commit-relevant test require-
ments has not been investigated by the mutation testing
literature [4]. Perhaps the closest work to ours is the regression
mutation testing by Zhang et al. [2] and the predictive mutation
testing by Zhang et al. and Mao et al. [36], [49]. Regression
mutation testing aims at identifying affected mutants in order
to incrementally calculate mutation score, while predictive
mutation testing aims at estimating the mutation score without
mutant execution. Apart from the different focus (we focus
on commit-relevant mutants and refined score, while they
focus on speeding up test execution and mutation score)
and approach details, our fundamental difference is that we
statically target killable mutants (both killed and live by the
employed test suites) that are relevant to the changed code (we
ignore irrelevant code parts and mutants).

VIII. CONCLUSION

We proposed commit-aware mutation testing, a mutation-
based assessment metric capable of measuring the extent to
which the program behaviours affected by some committed
changes have been tested. We showed that commit-aware
mutation testing has a weak correlation with the traditional
mutation score and other regression testing approximations
(such as the delta on mutation score between the pre- and
post- commit versions and mutants located on modified code)
indicating that it is a distinct metric. Our results also showed
that traditional mutant selection is non-optimal as it loses
approximately 50%-60% of the commit-relevant mutants when
analysing 5-25 mutants and has 30% less chances of revealing
commit-introducing faults.

ACKNOWLEDGEMENT

This work is supported by the Luxembourg National
Research Funds (FNR) through the CORE project grant
C17/IS/11686509/CODEMATES and by the Science Founda-
tion Ireland grant 13/RC/2094. T. Laurent is supported by an
Irish Research Council grant (GOIPG/2017/1829).



REFERENCES

[1] M. Fowler, “Continuous integration,” https://martinfowler.com/articles/
continuousIntegration.html, online; accessed 10 February 2020.

[2] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression mutation
testing,” in International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, 2012, pp. 331–
341.

[3] G. Petrovic and M. Ivankovic, “State of mutation testing at google,”
in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE (SEIP) 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 163–171.
[Online]. Available: https://doi.org/10.1145/3183519.3183521

[4] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,”
Advances in Computers, vol. 112, pp. 275–378, 2019. [Online].
Available: https://doi.org/10.1016/bs.adcom.2018.03.015

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: Help for the practicing programmer,” IEEE
Computer, vol. 11, no. 4, pp. 34–41, 1978. [Online]. Available:
https://doi.org/10.1109/C-M.1978.218136

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Trans. Software Eng., vol. 32, no. 8, pp. 608–624, 2006.
[Online]. Available: https://doi.org/10.1109/TSE.2006.83

[7] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008. [Online]. Available: https://doi.org/10.1017/
CBO9780511809163

[8] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical
study on mutation, statement and branch coverage fault revelation
that avoids the unreliable clean program assumption,” in Proceedings
of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 597–608.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.61

[9] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation
of selective mutation,” in Proceedings of the 15th International
Conference on Software Engineering, Baltimore, Maryland, USA,
May 17-21, 1993, 1993, pp. 100–107. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=257572.257597

[10] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and
M. Harman, “Detecting trivial mutant equivalences via compiler
optimisations,” IEEE Trans. Software Eng., vol. 44, no. 4, pp. 308–333,
2018. [Online]. Available: https://doi.org/10.1109/TSE.2017.2684805

[11] M. Marcozzi, S. Bardin, N. Kosmatov, M. Papadakis, V. Prevosto, and
L. Correnson, “Time to clean your test objectives,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
456–467. [Online]. Available: https://doi.org/10.1145/3180155.3180191

[12] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats
to the validity of mutation-based test assessment,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 354–365.
[Online]. Available: https://doi.org/10.1145/2931037.2931040

[13] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
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