Change-Aware Mutation Testing for Evolving Systems

Milos Ojdani¢*
milos.ojdanic@uni.lu
University of Luxembourg
Luxembourg

ABSTRACT

Although the strongest test criteria, traditional mutation testing
has shown to not scale with modern incremental development
practices. In this work, we describe our proposal of commit-aware
mutation testing and introduce the concept of commit-relevant
mutants suitable to evaluate the system’s behaviour after being
affected by regression changes. We show that commit-relevant
mutants represent a small but effective set that assesses the delta of
behaviours between two consecutive software versions. Commit-
aware mutation testing provides the guidance for developers to
quantify to which extent they have tested error-prone locations
impacted by program changes. In this paper, we portray our efforts
to make mutation criteria change-aware as we study characteristics
of commit-relevant mutants striving to bring mutation testing closer
to being worthwhile for evolving systems.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Software evolution.

KEYWORDS

Software Testing, Mutation Testing, Continuous Integration, Con-
tinuous Testing, Evolving Systems

ACM Reference Format:

Milos Ojdani¢. 2022. Change-Aware Mutation Testing for Evolving Systems.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
"22), November 14-18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3540250.3558911

1 INTRODUCTION

As the software functionalities evolve, it grows in complexity, open-
ing opportunities for experiencing faulty behaviour due to frequent
code modifications [18]. Modifications usually result from main-
tenance, code improvement or introducing a new feature. This
continuous development assumes that the previous version of a
system is operational, making practitioners particularly interested
in not breaking the existing stable version. To assure that the up-
dated software still possesses the functionality it had before the
updates, it is important to test the system after each evolution cycle
to keep the system behaviour as expected by eliminating occurring

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

ESEC/FSE 22, November 14—18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558911

1785

faults as early as possible [2]. Thus, automated regression testing
is used as gatekeeping to establish confidence that modifications
do not break any previously developed functionality, ensuring that
the system version is stable and behaves as expected [2].

In such a scenario, developers want a change-aware metric to
identify how thorough they have tested the changes and stress
their dependencies. In other words, developers are interested in
assessing the delta of the behaviour of previous and current versions.
Unfortunately, few scientific observations have been devoted to
forming and studying such change-aware testing criteria. It is of
far-reaching importance to emphasise that such criteria would be
a viable solution from both the quality assurance and economic
perspectives.

Among many proposed testing techniques to guide toward higher-
quality software, mutation testing arose as a technique that eval-
uates and guides to the most thorough tests [28]. The technique
generates slight syntactic program alterations - mutants - as test
requirements or criteria to design tests and detect these so-called
artificial faults. For a long time, it has been empirically proved that
mutants strongly correlate with real faults while mutation score
correlates with fault detection [8, 14, 29]. Among all other code cov-
erage criteria (e.g., branch, statements), mutation analysis is long
established as the strongest one, guiding the developer to write
semantically sensitive tests [3, 8].

Even though that mutation testing is an established testing tech-
nique, it assumes the static nature of software and uses blindly the
mutation score, which comprises all devised mutants [20]. This strat-
egy inflates the analysis as most mutants do not relate to the task of
the code-change in questions. We advocate that we should use only
mutants that interact with the changed program behaviours. Thus,
this doctoral research proposes and studies code commit-relevant
mutants to allow such focused testing. In our work, we first formally
define these mutants that serve as change-aware test requirements;
when satisfied, exercise the committed code and its integration
to the rest of the program under tests. Similarly, we propose a
commit-relevant mutation score as a substitute for the traditional
mutation score to serve as a metric to judge whether the test suite
is adequate in testing commit change and provide guidance for
further improvements. It is of far-reaching importance to study the
nature and properties of these mutants and their utility over time
in continuously evolving systems. Thus, as a continuance of our
work, we ventured to study the existence of implicit interaction
between the changed and unchanged code parts through the notion
of high-order mutants. As described in the paper, our work also
studies the advantages of commit-relevant mutants selection com-
pared with the state-of-the-art. In our analysis, we also report on
the show-case, describing and reporting the use of commit-relevant
mutants in assessing the regression test-case prioritisation methods.
After identifying and studying the advantages and properties of


http://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3540250.3558911
https://doi.org/10.1145/3540250.3558911

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

this category of mutants, as a work in progress, we report on the
study concerning the in-time ability of mutants to test evolving
systems for a considerable period of time. Thus, extending our work
from commit2commit practice (evaluation in a sequential commit
by commit manner) to the notion of long-standing mutants.

2 BACKGROUND AND RELATED WORK

Test criteria are metrics based on test requirements that yield spe-
cific elements of a software artefact that a test case must cover or
satisfy, thus quantifying the testing quality of the system. Differ-
ent coverage criteria have been proposed and used to guide test
generation and selection. Mutation coverage measures how well
a test suite can distinguish between the original program and the
variant, i.e., the original with slight syntactic deviation - mutant.
Well-established terminology defines the status of a variant as killed
when it is distinguished by a test case while surviving if not. This
variant is called mutant, and its syntactic deviation is traditionally
defined by grammar-based rules called mutation operators. These
operators are numerous, targeting all code elements exhaustively,
resulting in numerous and often impractical mutations.

The number of generated mutants has long been recognized as
a problem of mutation testing. Selective mutation started as an ap-
proach to constrain mutant generation by applying a set of carefully
crafted mutation operators [4, 9, 24, 25, 32-34]. While other studies
identified subsumption relationships between mutant operators,
thus targeting generation with operators that subsume other opera-
tors [15, 16, 35]. That subsumption goes beyond operators to mutant
execution behaviour, Ammann et al. [1, 19] recognized and defined
subsuming relationship between mutants, thus suggesting that ma-
jority of the mutants fall into the redundancy basket. Following
this line of work, Kurtz et al. [20] elaborate on test completeness,
suggesting that calculating mutation score based on subsuming
mutants ! [1] is superior to the traditional mutation score for de-
termining test completeness, w.r.t., eliminating redundancy. Yet,
even though subsuming mutants distinction will recognize all other
mutants and accurately measure test completeness, calculating this
subsumption relationship depends on the tests themselves, thus,
enabling this dynamic action only after the testing process, making
the process worth exploring but impractical in real-time unless
the mutants are prioritized based on their test completeness ad-
vancement probability which requires learning on these mutants
properties [17].

Accordingly, some approaches emerged to target the selection
of subsuming mutants over all mutants [13, 23]. On the other hand,
the problem of commit-relevant test requirements has not been
investigated by the literature [28]. A few studies reach to be the clos-
est work to ours, suggesting different approaches to scale mutation
testing in CI settings. Incremental Mutation Testing [5] proposes
the use of mutants on changed lines. Regression Mutation Test-
ing [37] is an approach that incrementally calculates the mutation
score by maintaining a mapping of mutants across program ver-
sions and (re)-calculating the mutation score based on the mutants
that lie on changes and dependencies. Thus, aiming to speed up test

1Given a finite set of mutants M and a finite set of tests T, mutant m; is said to
dynamically subsume mutant m; if some test in T kills m; and every test in T that
kills m; also kills m

1786

Milos Ojdani¢

execution while still considering the entire set of mutants when
testing evolving software systems. Predictive Mutation Testing [36]
is an approach which tries to predict mutation scores based on
code features. Existing mutation testing tools use some form of
incremental analysis through history logging [21]. Some reports
from the industry suggest a random selection of a few mutants
from the modified code areas for targeting the intent of code re-
view [30, 31]. Overall, it is clear that the proposed solutions target
the entire set of mutants (over-approximating), thus inflating test
completeness and introducing noise in the analysis by consider-
ing every test requirement blindly without considering the task of
the code change in question. Or either select a very few mutants,
thus under-approximating change-aware test thoroughness and
potentially missing some essential test requirements.

3 COMPLETED WORK

3.1 Commit-Aware Mutation Testing

The problematic regression faults arise from the unforeseen inter-
action of modified and unmodified parts of the code. The change-
aware test requirements representing the delta of behaviours be-
tween two observed program versions would capture this interac-
tion and allow for accurately and adequately testing of program
changes — providing the quantitative metric of the extent of the
change-aware test thoroughness. As we already pointed out, the
current reported research in this area comes short with such an
approach and metric. In intention to fill this gap, we defined and
formalized commit-relevant mutants - the mutants that capture
the interaction between the behaviours of the versions of the sys-
tem under change. The formal definition suggests that a mutant
becomes relevant if at least one test makes observable any be-
havioural difference between the version that includes only the
mutant (pre-commit version) and the version that includes the com-
mitted changes (post-commit) version. These two conditions ensure
the presence of observable dependency between a mutant and com-
mitted changes, i.e., mutant changes its behaviour due to the code
modifications. Thus, distinguishing commit-relevant mutants re-
sults in tests capable of detecting any potential faults that depend
on the commit (30% more chances of detecting commit introducing
faults over state-of-the-art as we will further report). It is true to say
that our definition allows the inclusion of mutants that can be killed
by tests that are not all relevant to a committed change. Although
those mutants are indeed relevant as they depend on the changed
part of the code, we also ventured to propose different levels of mu-
tant relevance - considering the strength of dependency between
mutants and the changed part of the code. Thus, we defined that
the value of relevance lies between 0 and 1, whereas relevance takes
a value of 0 if there is no observable difference between a mutant
and code change. While the value increases, the mutant becomes
more relevant until the point when the observable difference can
be detected by every test, making a mutant strongly relevant with
relevance value 1. The selection of strong commit-relevant mutants
would always lead to tests that exercise the unforeseen interactive
dependencies between the changed and unchanged part of the code.

Overall, the first part of this work introduces commit-relevant
mutants, while formal definition details can be found in our journal
article [22, 26].



Change-Aware Mutation Testing for Evolving Systems

3.2 On the Use of Commit-Relevant Mutants

In addition to the introduction and formal definition of commit-
relevant mutants, we studied and confirmed our hypothesis that
most mutants introduce noise in the mutation score while being
irrelevant to the code-change. To be precise — we identified that
the portion of relevant mutants to commit change is between 0.5%
to 47%. Whereas, for most observed program versions, the set of
commit-relevant mutants is small. In contrast, it happened the sce-
nario where the source code under test is not large, though the
change locates on the crucial points in the system under test, result-
ing in more extensive sets. After identifying the distribution of the
existence of relevant mutants and substantial noise of irrelevant
mutants, we had to check the extent to which the noise influences
the mutation score. In particular, we studied whether the traditional
mutation score correlates with the relevant mutation score, which
serves as evidence of commit-aware test assessment, i.e., reflects
the level at which the altered code has been tested. We found no
correlation suggesting that the traditional mutation score is a met-
ric that can be used as a proxy for altered code, suggesting that the
effect of irrelevant mutant may distort the testing process. Besides,
one may suggest that random selection of mutants can significantly
kill commit-relevant mutants. We explored this hypothesis by sim-
ulating a scenario where a tester analyses mutants and kills them.
The simulation comprised the best effort bases, analyzing the same
number of mutants. We identified that by analyzing up to 50 mu-
tants, a developer would miss around 50-60% of relevant mutants
for both C and Java studied project versions. At the same time, we
measure fault detection — how writing tests to kill relevant mu-
tants detect real faults — and detect that targeting commit-relevant
mutants leads to a 30-40% of difference in fault detection when
compared with random selection and mutants on modification. As
one may wonder, we also ventured to explore how different the
relevant mutants are from the existing subsuming and hard-to-kill
classes. The interesting finding suggests that relevant mutants are
also non-subsuming, indicating many redundancies among rele-
vant mutants and further direction to explore. In this work, we also
showcase the use of relevant mutants in assessing regression test
prioritization methods. Our work argues that the explored standard
test case prioritization guiding metrics show relatively small val-
ues to detect change-aware mutants. This observation raises the
question of how well and complete the prioritization techniques
can identify regression faults. We motivate future researchers to
explore this line of work and use relevant mutants as guidance and
a proxy for the introduced regression faults.

Overall, this work demonstrates the need and advantages of ap-
plying commit-aware mutation testing over traditional mutation
testing in the environment of continuous software evolution. Addi-
tionally, let us point to our published journal article for more details
and descriptions [26].

3.3 Approximating Relevant Mutants with
High-Order Mutations

Applying mutation testing in continuously evolving systems is
not a trivial task due to the scale of possible mutations, program
complexity and the difficulty of determining the impact of the de-
pendencies of the program change. Although previously proposed

1787

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

commit-aware mutation testing is a powerful technique, one may
argue that it includes complex semantics, viewed through the strict
clean test contract assumption - no changed tests between the ver-
sions, which is true to say, according to our scientific observations,
that is challenging to satisfy assumption in open-source software,
while it is common in industrial settings. Another complexity in de-
sign can be recognized as a need to analyze and employ a test suite
from pre-, and post-commit versions, using test oracle as observa-
tional behaviour. Aiming to alleviate these design requirements,
we proposed an approach for identifying commit-relevant mutants
based on the special notion of observational slicing that employs
high-order mutants. In particular, to observe the relevance of a
mutant to the point of interest (code change), we rely on second-
order mutants, where the comparison mutant is on the changed
part of the code and serves to capture the existence of an implicit
relationship between a mutant outside the changed code. In short,
the intuition is that the mutants located on the modified code (note
that the mutant is syntactic change by itself) impact the behaviour
of the mutants on the unmodified code, thus making it relevant as
it depends on the changed code. More formally, if we consider two
first-order mutants Mx and My, where one is located outside the
change, and another is located on a change, then the high-order
mutant Mxy is their by-product. We say that Mx is commit-relevant
if the high order mutant Mxy has different behaviour than Mx and
My. This formalization releases strict commit-aware mutation test-
ing design requirements, employing only the post-commit version
and its test suite. At the same time, it is essential to note that we
even ventured into instrumenting test suites (test assertions), such
as observing test inputs/outputs over test oracles to define more
fine-grained behaviour and study the mutant impact.

Please refer to our journal-first article for a brother and deeper
view of this work [27].

3.4 Studying Relevance of Mutants to
Code-Evolution

Due to the diversity and portability of the proposed approaches, we
managed to create and study the most extensive dataset of mutants
(over 10 million) to date in a continuous integration environment.
We set the ground truth for our study for around 300 commits for dif-
ferent projects. Our analysis inquires about the locations of mutants
and their scope inside the changed program files as we argue this
is the scope of developers interest. In this study, we confirmed the
previous finding suggesting that around 30% of mutants are commit-
relevant. At the same time, we extended our analysis and focused
on a minimal (subsuming) set of commit-relevant mutants. This
analysis shows intriguing results and indicates that by selecting
only subsuming commit relevant mutants, we reduce the number of
mutants requiring analysis by around 93% on average. Furthermore,
we report that 69% of the mutants are located outside the changed
methods, indicating the importance of testing the interdependency
of units (methods) in Java class modules. The merit of the observa-
tions is that executing commit-relevant mutants may reduce the
test execution compared to a random selection of all mutants in
commit-changed files. In our study, we identified a reduction of up
to 16 times. Another task we explored relates to the selection of
mutants. We identified that standard selection techniques would



ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

miss approximately 45% of subsuming commit-relevant mutants
when analyzing the scope of up to 20 mutants. We studied commit-
relevant mutants features (related to code graphs, abstract syntax
trees, mutants operators, etc.), utilities and commit properties and
identified that commit-relevant mutants in Java language cannot
be reliable and precisely predicted by those features which are all
previously reported by the literature for different prediction tasks.
Overall our work delivers the characteristics of commit-relevant
mutants, where we study their prevalence, location, effectiveness,
and efficiency — while we inform on their predictability using the
features from the literature and discuss the potential guidelines and
implications for practice.

Allin all, our published journal article contains more details and
descriptions [27].

4 EVALUATION

We performed mutation testing and analyses on both Java and
C programming language. For mutants generation, we employed
state-of-the-art tools Pitest [21] and Mart [7] and their diverse op-
erators. Our study subjects count around 50 GNU Coreutils [12]
shell utility programs producing 500k mutants and 8 Apache Com-
mons Utility [10] programs with around 300 commits resulting
in over 10 million mutants for C and Java, respectively. We col-
lected both developer-written and automatically generated tests to
obtain a rich test suite that stresses program semantics. We aug-
mented our test suite using KLEE [6] and Evosuite [11] for C and
Java, respectively. For our experiments related to fault detection,
we used COREBench program versions that introduce faults as
they were compatible with the versions we use to study commit-
relevant mutants. In addition, it is important to note that in all the
parts of our experiments performing statistical analysis, we use
three correlation metrics depending on the context: Kendall rank
coeflicient, Pearson product-moment correlation coefficient and
Spearman’s rank correlation coefficient. In all cases, we ensured
that our results were statistically significant with a significance
level of 0.05 and measured the strength of the relationships with
effect size. As manually analyzing mutants is a time-consuming and
tedious task (no doubt that is unrealistic on the scale of our studies),
we performed developer simulations to analyze the importance of
commit-relevant mutants. These work simulations have been used
thoroughly in various reported studies and set up the scenario in
which a developer selects a mutant from a pool - guided by a se-
lection strategy — and writes a test to distinguish it while checking
whether the test detects the remaining set of undetected mutants.
The procedure is usually repeated 100 times to remove the threat
of randomness in the process. Since we perform on a best-effort
evaluation, we focus our study on the initial few mutants (up to 20
and 50) that a practitioner would analyze in order to test a commit
under test.

5 CURRENT WORK

In-Time Testing of Evolving systems with Long-Standing mutants.
The completed work introduced the definition and shows the advan-
tages of obtaining a change-aware metric to evaluate the thorough-
ness of testing altered software while measuring whether it still
possesses its pre-update stability. It is true to say that the technique

1788

Milos Ojdani¢

focuses on impacted mutants that aim to provide guidance for test
augmentation and evaluation by targeting the changed program
functionality. However, our scientific observation recognizes that
the many of the mutants do not change over time, which is espe-
cially noticeable once the system reaches a certain level of maturity.
Thus, in the current work, we ventured to explore to what extent
the mutants and associated mutant selection can provide accurate
test assessment over a considerably extended period of time - being
diametric to the commit2commit practice we explored so far. We
hypothesize that many mutants become obsolete and offer poor
test assessment, while we envision devising a technique that se-
lects mutants based on their maturity. In particular, these mutants
have the potential to carry the knowledge of dynamic relationships,
tackle departed technical debts and evaluate or keep from break-
ing testing requirements for mature code components. Thus, our
current work defines the notion of long-standing mutants, which
maximize the return of investment put at a given time - provide
test assessment for a prolonged time. In addition to defining the
benefits, we demonstrate that mutants have diverse lifetimes over
project evolution lifetime and demonstrate that efficient selection
of long-standing mutants can provide benefits for at least 10x the
amount of time longer than a random selection.

This line of work is still in progress and is yet to be considered
for publication.

6 CONTRIBUTION TO KNOWLEDGE

To make the mutation testing technique scale and apply its full
fault detection potential in the context of evolving systems, it is
necessary to switch the stance from traditional mutation testing
and pave the way for future research in the direction of continu-
ous integration. Until the present, we witnessed little effort from
the community to tackle the problem, which suggests potential
irrecognition of the benefits. We argue that our work can result in
a thesis dissertation that provides more than one contribution to
the field of mutation testing. First and foremost, our work opens a
new direction toward commit-aware mutation testing. We study
and report on the usage benefits of this approach over traditional
mutation testing and standard random and incremental mutant se-
lection strategies. Additionally, we study the properties and utilities
of commit-relevant mutants aiming to inform researchers about
their predictable nature - hoping that the future direction can result
in a reliable and robust learning selection strategy. In the case of
perfect strategy, we inform on the existence of the minimal subset
of commit-relevant mutants that significantly reduces the complete
number of mutants for change-aware commit testing. Altogether
our works pioneer the change-aware mutation testing criteria.

ACKNOWLEDGMENTS

The author is advised by Prof. Mike Papadakis, who is associate
professor at the University of Luxembourg. This work has been
done under the PayPal project, supported and funded by the SnT -
Interdisciplinary Centre for Security, Reliability and Trust at Uni-
versity of Luxembourg and FNR - Luxembourg National Research
Fund.



Change-Aware Mutation Testing for Evolving Systems

REFERENCES

(1]

(2]
(3]

[10]

[11]

[12

[13]

[14

[15]

[16]

[17]

[18]

[20]

Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing
theoretical minimal sets of mutants. In 2014 IEEE seventh international conference
on software testing, verification and validation. IEEE, 21-30.

Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608—-624.

Ellen Barbosa, José Maldonado, and Auri Vincenzi. 2001. Toward the determina-
tion of sufficient mutant operators for C. Softw. Test., Verif. Reliab. 11 (06 2001),
113-136. https://doi.org/10.1002/stvr.226

Mark Anthony Cachia, Mark Micallef, and Christian Colombo. 2013. Towards
incremental mutation testing. Electronic Notes in Theoretical Computer Science
294 (2013), 2-11.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209-224.

Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: a
mutant generation tool for LLVM. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1080-1084.

Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
2017. An empirical study on mutation, statement and branch coverage fault rev-
elation that avoids the unreliable clean program assumption. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 597-608.
Marcio Eduardo Delamaro, Lin Deng, Vinicius Humberto Serapilha Durelli, Nan
Li, and Jeff Offutt. 2014. Experimental Evaluation of SDL and One-Op Muta-
tion for C. In 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. 203-212. https://doi.org/10.1109/ICST.2014.33

The Apache Software Foundation. accessed July 14, 2022. Apache Commons.
https://commons.apache.org/.

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416—419.
Inc. Free Software Foundation. accessed July 14, 2022. GNU Coreutils shell utility
programs. https://www.gnu.org/software/coreutils/.

Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu Chekam,
Mike Papadakis, and Yves Le Traon. 2022. Cerebro: Static Subsuming Mu-
tant Selection. IEEE Transactions on Software Engineering (2022), 1-1. https:
//doi.org/10.1109/TSE.2022.3140510

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654-665.

Gary Kaminski, Paul Ammann, and Jeff Offutt. 2011. Better Predicate Testing.
In Proceedings of the 6th International Workshop on Automation of Software Test
(Waikiki, Honolulu, HI, USA) (AST ’11). Association for Computing Machinery,
New York, NY, USA, 57-63. https://doi.org/10.1145/1982595.1982608

Gary Kaminski, Paul Ammann, and Jeff Offutt. 2013. Improving Logic-Based
Testing. J. Syst. Softw. 86, 8 (aug 2013), 2002-2012. https://doi.org/10.1016/j.jss.
2012.08.024

Samuel ] Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing mutants to guide mutation testing. In Proceedings of
the 44th International Conference on Software Engineering. 1743-1754.

Gene Kim, Patrick Debois, John Willis, and Jez Humble. 2016. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press.

Bob Kurtz, Paul Ammann, Marcio E Delamaro, Jeff Offutt, and Lin Deng. 2014.
Mutant subsumption graphs. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. IEEE, 176-185.

Bob Kurtz, Paul Ammann, Jeff Offutt, and Mariet Kurtz. 2016. Are We There
Yet? How Redundant and Equivalent Mutants Affect Determination of Test Com-
pleteness. IEEE International Conference on Software Testing, Verification and
Validation, 142-151. https://doi.org/10.1109/ICSTW.2016.41

1789

[21]

[22

[23

[24

[25]

[26

&
=

[28

[29

[30

[31

[32

(33]

[34

[36]

(37

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Thomas Laurent, Mike Papadakis, Marinos Kintis, Christopher Henard, Yves Le
Traon, and Anthony Ventresque. 2017. Assessing and Improving the Mutation
Testing Practice of PIT. IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST), 430-435. https://doi.org/10.1109/ICST.2017.47
Wei Ma, Thomas Laurent, Milos Ojdani¢, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2020. Commit-aware mutation testing. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 394-405.

Michaél Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis, Vir-
gile Prevosto, and Loic Correnson. 2018. Time to Clean Your Test Objectives.
In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (IEEE/ACM International Conference on Software Engi-
neering ’'18). Association for Computing Machinery, New York, NY, USA, 456-467.
https://doi.org/10.1145/3180155.3180191

A]J. Offutt, G. Rothermel, and C. Zapf. 1993. An experimental evaluation of se-
lective mutation. In Proceedings of 1993 15th International Conference on Software
Engineering. 100-107. https://doi.org/10.1109/ICSE.1993.346062

A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Chris-
tian Zapf. 1996. An Experimental Determination of Sufficient Mutant Op-
erators. ACM Trans. Softw. Eng. Methodol. 5, 2 (apr 1996), 99-118. https:
//doi.org/10.1145/227607.227610

Milos Ojdani¢, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2022. On the use of commit-relevant mutants.
Empirical Software Engineering 27, 5 (2022), 1-31.

Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and Yves
Le Traon. 2022. Mutation Testing in Evolving Systems: Studying the relevance
of mutants to code evolution. ACM Transactions on Software Engineering and
Methodology (2022).

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275-378.

Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mu-
tation scores correlated with real fault detection? a large scale empirical study
on the relationship between mutants and real faults. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 537-548.

Goran Petrovi¢ and Marko Ivankovi¢. 2018. State of mutation testing at
google. IEEE/ACM International Conference on Software Engineering, 163-171.
https://doi.org/10.1145/3183519.3183521

Goran Petrovi¢, Marko Ivankovi¢, Bob Kurtz, Paul Ammann, and René Just. 2018.
An industrial application of mutation testing: Lessons, challenges, and research
directions. IEEE International Conference on Software Testing, Verification and
Validation, 47-53. https://doi.org/10.1109/ICSTW.2018.00027

Akbar Siami Namin and James Andrews. 2006. Finding Sufficient Mutation Op-
erators via Variable Reduction. 2nd Workshop on Mutation Analysis (Mutation
2006 - ISSRE Workshops 2006), MUTATION 06 (11 2006). https://doi.org/10.1109/
MUTATION.2006.7

Akbar Siami Namin, James Andrews, and Duncan Murdoch. 2008. Sufficient
mutation operators for measuring test effectiveness. In 2008 ACM/IEEE 30th In-
ternational Conference on Software Engineering. 351-360. https://doi.org/10.1145/
1368088.1368136

W.Eric Wong and Aditya P. Mathur. 1995. Reducing the cost of mutation test-
ing: An empirical study. Journal of Systems and Software 31, 3 (1995), 185-196.
https://doi.org/10.1016/0164-1212(94)00098-0

Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent
and Stubborn Mutation Operators Using Human Analysis of Equivalence. In
Proceedings of the 36th International Conference on Software Engineering (Hy-
derabad, India) (IEEE/ACM International Conference on Software Engineering
2014). Association for Computing Machinery, New York, NY, USA, 919-930.
https://doi.org/10.1145/2568225.2568265

Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2019. Predictive Mutation Testing. IEEE Transactions on Software Engineering 45,
9 (2019), 898-918. https://doi.org/10.1109/TSE.2018.2809496

Lingming Zhang and Darko Marinov. 2012. Regression Mutation Testing. The
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
341.


https://doi.org/10.1002/stvr.226
https://doi.org/10.1109/ICST.2014.33
https://commons.apache.org/
https://www.gnu.org/software/coreutils/
https://doi.org/10.1109/TSE.2022.3140510
https://doi.org/10.1109/TSE.2022.3140510
https://doi.org/10.1145/1982595.1982608
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ICST.2017.47
https://doi.org/10.1145/3180155.3180191
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/MUTATION.2006.7
https://doi.org/10.1109/MUTATION.2006.7
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1016/0164-1212(94)00098-0
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1109/TSE.2018.2809496

	Abstract
	1 Introduction
	2 Background and Related work
	3 Completed Work
	3.1 Commit-Aware Mutation Testing
	3.2 On the Use of Commit-Relevant Mutants
	3.3 Approximating Relevant Mutants with High-Order Mutations
	3.4 Studying Relevance of Mutants to Code-Evolution

	4 Evaluation
	5 Current Work
	6 Contribution to Knowledge
	Acknowledgments
	References

