
Change-Aware Mutation Testing for Evolving Systems

Miloš Ojdanić∗

milos.ojdanic@uni.lu

University of Luxembourg

Luxembourg

ABSTRACT

Although the strongest test criteria, traditional mutation testing

has shown to not scale with modern incremental development

practices. In this work, we describe our proposal of commit-aware

mutation testing and introduce the concept of commit-relevant

mutants suitable to evaluate the system’s behaviour after being

affected by regression changes. We show that commit-relevant

mutants represent a small but effective set that assesses the delta of

behaviours between two consecutive software versions. Commit-

aware mutation testing provides the guidance for developers to

quantify to which extent they have tested error-prone locations

impacted by program changes. In this paper, we portray our efforts

to make mutation criteria change-aware as we study characteristics

of commit-relevantmutants striving to bringmutation testing closer

to being worthwhile for evolving systems.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; Software evolution.

KEYWORDS

Software Testing, Mutation Testing, Continuous Integration, Con-

tinuous Testing, Evolving Systems

ACM Reference Format:

Miloš Ojdanić. 2022. Change-Aware Mutation Testing for Evolving Systems.

In Proceedings of the 30th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’22), November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3540250.3558911

1 INTRODUCTION

As the software functionalities evolve, it grows in complexity, open-

ing opportunities for experiencing faulty behaviour due to frequent

code modifications [18]. Modifications usually result from main-

tenance, code improvement or introducing a new feature. This

continuous development assumes that the previous version of a

system is operational, making practitioners particularly interested

in not breaking the existing stable version. To assure that the up-

dated software still possesses the functionality it had before the

updates, it is important to test the system after each evolution cycle

to keep the system behaviour as expected by eliminating occurring

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558911

faults as early as possible [2]. Thus, automated regression testing

is used as gatekeeping to establish confidence that modifications

do not break any previously developed functionality, ensuring that

the system version is stable and behaves as expected [2].

In such a scenario, developers want a change-aware metric to

identify how thorough they have tested the changes and stress

their dependencies. In other words, developers are interested in

assessing the delta of the behaviour of previous and current versions.

Unfortunately, few scientific observations have been devoted to

forming and studying such change-aware testing criteria. It is of

far-reaching importance to emphasise that such criteria would be

a viable solution from both the quality assurance and economic

perspectives.

Amongmany proposed testing techniques to guide toward higher-

quality software, mutation testing arose as a technique that eval-

uates and guides to the most thorough tests [28]. The technique

generates slight syntactic program alterations - mutants - as test

requirements or criteria to design tests and detect these so-called

artificial faults. For a long time, it has been empirically proved that

mutants strongly correlate with real faults while mutation score

correlates with fault detection [8, 14, 29]. Among all other code cov-

erage criteria (e.g., branch, statements), mutation analysis is long

established as the strongest one, guiding the developer to write

semantically sensitive tests [3, 8].

Even though that mutation testing is an established testing tech-

nique, it assumes the static nature of software and uses blindly the

mutation score, which comprises all devisedmutants [20]. This strat-

egy inflates the analysis as most mutants do not relate to the task of

the code-change in questions. We advocate that we should use only

mutants that interact with the changed program behaviours. Thus,

this doctoral research proposes and studies code commit-relevant

mutants to allow such focused testing. In our work, we first formally

define these mutants that serve as change-aware test requirements;

when satisfied, exercise the committed code and its integration

to the rest of the program under tests. Similarly, we propose a

commit-relevant mutation score as a substitute for the traditional

mutation score to serve as a metric to judge whether the test suite

is adequate in testing commit change and provide guidance for

further improvements. It is of far-reaching importance to study the

nature and properties of these mutants and their utility over time

in continuously evolving systems. Thus, as a continuance of our

work, we ventured to study the existence of implicit interaction

between the changed and unchanged code parts through the notion

of high-order mutants. As described in the paper, our work also

studies the advantages of commit-relevant mutants selection com-

pared with the state-of-the-art. In our analysis, we also report on

the show-case, describing and reporting the use of commit-relevant

mutants in assessing the regression test-case prioritisation methods.

After identifying and studying the advantages and properties of

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

1785

http://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3540250.3558911
https://doi.org/10.1145/3540250.3558911


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Miloš Ojdanić

this category of mutants, as a work in progress, we report on the

study concerning the in-time ability of mutants to test evolving

systems for a considerable period of time. Thus, extending our work

from commit2commit practice (evaluation in a sequential commit

by commit manner) to the notion of long-standing mutants.

2 BACKGROUND AND RELATED WORK

Test criteria are metrics based on test requirements that yield spe-

cific elements of a software artefact that a test case must cover or

satisfy, thus quantifying the testing quality of the system. Differ-

ent coverage criteria have been proposed and used to guide test

generation and selection. Mutation coverage measures how well

a test suite can distinguish between the original program and the

variant, i.e., the original with slight syntactic deviation - mutant.

Well-established terminology defines the status of a variant as killed

when it is distinguished by a test case while surviving if not. This

variant is called mutant, and its syntactic deviation is traditionally

defined by grammar-based rules called mutation operators. These

operators are numerous, targeting all code elements exhaustively,

resulting in numerous and often impractical mutations.

The number of generated mutants has long been recognized as

a problem of mutation testing. Selective mutation started as an ap-

proach to constrain mutant generation by applying a set of carefully

crafted mutation operators [4, 9, 24, 25, 32ś34]. While other studies

identified subsumption relationships between mutant operators,

thus targeting generation with operators that subsume other opera-

tors [15, 16, 35]. That subsumption goes beyond operators to mutant

execution behaviour, Ammann et al. [1, 19] recognized and defined

subsuming relationship between mutants, thus suggesting that ma-

jority of the mutants fall into the redundancy basket. Following

this line of work, Kurtz et al. [20] elaborate on test completeness,

suggesting that calculating mutation score based on subsuming

mutants 1 [1] is superior to the traditional mutation score for de-

termining test completeness, w.r.t., eliminating redundancy. Yet,

even though subsuming mutants distinction will recognize all other

mutants and accurately measure test completeness, calculating this

subsumption relationship depends on the tests themselves, thus,

enabling this dynamic action only after the testing process, making

the process worth exploring but impractical in real-time unless

the mutants are prioritized based on their test completeness ad-

vancement probability which requires learning on these mutants

properties [17].

Accordingly, some approaches emerged to target the selection

of subsuming mutants over all mutants [13, 23]. On the other hand,

the problem of commit-relevant test requirements has not been

investigated by the literature [28]. A few studies reach to be the clos-

est work to ours, suggesting different approaches to scale mutation

testing in CI settings. Incremental Mutation Testing [5] proposes

the use of mutants on changed lines. Regression Mutation Test-

ing [37] is an approach that incrementally calculates the mutation

score by maintaining a mapping of mutants across program ver-

sions and (re)-calculating the mutation score based on the mutants

that lie on changes and dependencies. Thus, aiming to speed up test

1Given a finite set of mutants M and a finite set of tests T, mutant 𝑚𝑖 is said to
dynamically subsume mutant𝑚 𝑗 if some test in T kills𝑚𝑖 and every test in T that

kills𝑚𝑖 also kills𝑚 𝑗

execution while still considering the entire set of mutants when

testing evolving software systems. Predictive Mutation Testing [36]

is an approach which tries to predict mutation scores based on

code features. Existing mutation testing tools use some form of

incremental analysis through history logging [21]. Some reports

from the industry suggest a random selection of a few mutants

from the modified code areas for targeting the intent of code re-

view [30, 31]. Overall, it is clear that the proposed solutions target

the entire set of mutants (over-approximating), thus inflating test

completeness and introducing noise in the analysis by consider-

ing every test requirement blindly without considering the task of

the code change in question. Or either select a very few mutants,

thus under-approximating change-aware test thoroughness and

potentially missing some essential test requirements.

3 COMPLETEDWORK

3.1 Commit-Aware Mutation Testing

The problematic regression faults arise from the unforeseen inter-

action of modified and unmodified parts of the code. The change-

aware test requirements representing the delta of behaviours be-

tween two observed program versions would capture this interac-

tion and allow for accurately and adequately testing of program

changes ś providing the quantitative metric of the extent of the

change-aware test thoroughness. As we already pointed out, the

current reported research in this area comes short with such an

approach and metric. In intention to fill this gap, we defined and

formalized commit-relevant mutants - the mutants that capture

the interaction between the behaviours of the versions of the sys-

tem under change. The formal definition suggests that a mutant

becomes relevant if at least one test makes observable any be-

havioural difference between the version that includes only the

mutant (pre-commit version) and the version that includes the com-

mitted changes (post-commit) version. These two conditions ensure

the presence of observable dependency between a mutant and com-

mitted changes, i.e., mutant changes its behaviour due to the code

modifications. Thus, distinguishing commit-relevant mutants re-

sults in tests capable of detecting any potential faults that depend

on the commit (30% more chances of detecting commit introducing

faults over state-of-the-art as we will further report). It is true to say

that our definition allows the inclusion of mutants that can be killed

by tests that are not all relevant to a committed change. Although

those mutants are indeed relevant as they depend on the changed

part of the code, we also ventured to propose different levels of mu-

tant relevance - considering the strength of dependency between

mutants and the changed part of the code. Thus, we defined that

the value of relevance lies between 0 and 1, whereas relevance takes

a value of 0 if there is no observable difference between a mutant

and code change. While the value increases, the mutant becomes

more relevant until the point when the observable difference can

be detected by every test, making a mutant strongly relevant with

relevance value 1. The selection of strong commit-relevant mutants

would always lead to tests that exercise the unforeseen interactive

dependencies between the changed and unchanged part of the code.

Overall, the first part of this work introduces commit-relevant

mutants, while formal definition details can be found in our journal

article [22, 26].

1786



Change-Aware Mutation Testing for Evolving Systems ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

3.2 On the Use of Commit-Relevant Mutants

In addition to the introduction and formal definition of commit-

relevant mutants, we studied and confirmed our hypothesis that

most mutants introduce noise in the mutation score while being

irrelevant to the code-change. To be precise ś we identified that

the portion of relevant mutants to commit change is between 0.5%

to 47%. Whereas, for most observed program versions, the set of

commit-relevant mutants is small. In contrast, it happened the sce-

nario where the source code under test is not large, though the

change locates on the crucial points in the system under test, result-

ing in more extensive sets. After identifying the distribution of the

existence of relevant mutants and substantial noise of irrelevant

mutants, we had to check the extent to which the noise influences

the mutation score. In particular, we studied whether the traditional

mutation score correlates with the relevant mutation score, which

serves as evidence of commit-aware test assessment, i.e., reflects

the level at which the altered code has been tested. We found no

correlation suggesting that the traditional mutation score is a met-

ric that can be used as a proxy for altered code, suggesting that the

effect of irrelevant mutant may distort the testing process. Besides,

one may suggest that random selection of mutants can significantly

kill commit-relevant mutants. We explored this hypothesis by sim-

ulating a scenario where a tester analyses mutants and kills them.

The simulation comprised the best effort bases, analyzing the same

number of mutants. We identified that by analyzing up to 50 mu-

tants, a developer would miss around 50-60% of relevant mutants

for both C and Java studied project versions. At the same time, we

measure fault detection ś how writing tests to kill relevant mu-

tants detect real faults ś and detect that targeting commit-relevant

mutants leads to a 30-40% of difference in fault detection when

compared with random selection and mutants on modification. As

one may wonder, we also ventured to explore how different the

relevant mutants are from the existing subsuming and hard-to-kill

classes. The interesting finding suggests that relevant mutants are

also non-subsuming, indicating many redundancies among rele-

vant mutants and further direction to explore. In this work, we also

showcase the use of relevant mutants in assessing regression test

prioritization methods. Our work argues that the explored standard

test case prioritization guiding metrics show relatively small val-

ues to detect change-aware mutants. This observation raises the

question of how well and complete the prioritization techniques

can identify regression faults. We motivate future researchers to

explore this line of work and use relevant mutants as guidance and

a proxy for the introduced regression faults.

Overall, this work demonstrates the need and advantages of ap-

plying commit-aware mutation testing over traditional mutation

testing in the environment of continuous software evolution. Addi-

tionally, let us point to our published journal article for more details

and descriptions [26].

3.3 Approximating Relevant Mutants with

High-Order Mutations

Applying mutation testing in continuously evolving systems is

not a trivial task due to the scale of possible mutations, program

complexity and the difficulty of determining the impact of the de-

pendencies of the program change. Although previously proposed

commit-aware mutation testing is a powerful technique, one may

argue that it includes complex semantics, viewed through the strict

clean test contract assumption - no changed tests between the ver-

sions, which is true to say, according to our scientific observations,

that is challenging to satisfy assumption in open-source software,

while it is common in industrial settings. Another complexity in de-

sign can be recognized as a need to analyze and employ a test suite

from pre-, and post-commit versions, using test oracle as observa-

tional behaviour. Aiming to alleviate these design requirements,

we proposed an approach for identifying commit-relevant mutants

based on the special notion of observational slicing that employs

high-order mutants. In particular, to observe the relevance of a

mutant to the point of interest (code change), we rely on second-

order mutants, where the comparison mutant is on the changed

part of the code and serves to capture the existence of an implicit

relationship between a mutant outside the changed code. In short,

the intuition is that the mutants located on the modified code (note

that the mutant is syntactic change by itself) impact the behaviour

of the mutants on the unmodified code, thus making it relevant as

it depends on the changed code. More formally, if we consider two

first-order mutants Mx and My, where one is located outside the

change, and another is located on a change, then the high-order

mutant Mxy is their by-product. We say that Mx is commit-relevant

if the high order mutant Mxy has different behaviour than Mx and

My. This formalization releases strict commit-aware mutation test-

ing design requirements, employing only the post-commit version

and its test suite. At the same time, it is essential to note that we

even ventured into instrumenting test suites (test assertions), such

as observing test inputs/outputs over test oracles to define more

fine-grained behaviour and study the mutant impact.

Please refer to our journal-first article for a brother and deeper

view of this work [27].

3.4 Studying Relevance of Mutants to

Code-Evolution

Due to the diversity and portability of the proposed approaches, we

managed to create and study the most extensive dataset of mutants

(over 10 million) to date in a continuous integration environment.

We set the ground truth for our study for around 300 commits for dif-

ferent projects. Our analysis inquires about the locations of mutants

and their scope inside the changed program files as we argue this

is the scope of developers interest. In this study, we confirmed the

previous finding suggesting that around 30% of mutants are commit-

relevant. At the same time, we extended our analysis and focused

on a minimal (subsuming) set of commit-relevant mutants. This

analysis shows intriguing results and indicates that by selecting

only subsuming commit relevant mutants, we reduce the number of

mutants requiring analysis by around 93% on average. Furthermore,

we report that 69% of the mutants are located outside the changed

methods, indicating the importance of testing the interdependency

of units (methods) in Java class modules. The merit of the observa-

tions is that executing commit-relevant mutants may reduce the

test execution compared to a random selection of all mutants in

commit-changed files. In our study, we identified a reduction of up

to 16 times. Another task we explored relates to the selection of

mutants. We identified that standard selection techniques would

1787



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Miloš Ojdanić

miss approximately 45% of subsuming commit-relevant mutants

when analyzing the scope of up to 20 mutants. We studied commit-

relevant mutants features (related to code graphs, abstract syntax

trees, mutants operators, etc.), utilities and commit properties and

identified that commit-relevant mutants in Java language cannot

be reliable and precisely predicted by those features which are all

previously reported by the literature for different prediction tasks.

Overall our work delivers the characteristics of commit-relevant

mutants, where we study their prevalence, location, effectiveness,

and efficiency ś while we inform on their predictability using the

features from the literature and discuss the potential guidelines and

implications for practice.

All in all, our published journal article contains more details and

descriptions [27].

4 EVALUATION

We performed mutation testing and analyses on both Java and

C programming language. For mutants generation, we employed

state-of-the-art tools Pitest [21] and Mart [7] and their diverse op-

erators. Our study subjects count around 50 GNU Coreutils [12]

shell utility programs producing 500k mutants and 8 Apache Com-

mons Utility [10] programs with around 300 commits resulting

in over 10 million mutants for C and Java, respectively. We col-

lected both developer-written and automatically generated tests to

obtain a rich test suite that stresses program semantics. We aug-

mented our test suite using KLEE [6] and Evosuite [11] for C and

Java, respectively. For our experiments related to fault detection,

we used COREBench program versions that introduce faults as

they were compatible with the versions we use to study commit-

relevant mutants. In addition, it is important to note that in all the

parts of our experiments performing statistical analysis, we use

three correlation metrics depending on the context: Kendall rank

coefficient, Pearson product-moment correlation coefficient and

Spearman’s rank correlation coefficient. In all cases, we ensured

that our results were statistically significant with a significance

level of 0.05 and measured the strength of the relationships with

effect size. As manually analyzing mutants is a time-consuming and

tedious task (no doubt that is unrealistic on the scale of our studies),

we performed developer simulations to analyze the importance of

commit-relevant mutants. These work simulations have been used

thoroughly in various reported studies and set up the scenario in

which a developer selects a mutant from a pool ś guided by a se-

lection strategy ś and writes a test to distinguish it while checking

whether the test detects the remaining set of undetected mutants.

The procedure is usually repeated 100 times to remove the threat

of randomness in the process. Since we perform on a best-effort

evaluation, we focus our study on the initial few mutants (up to 20

and 50) that a practitioner would analyze in order to test a commit

under test.

5 CURRENTWORK

In-Time Testing of Evolving systems with Long-Standing mutants.

The completed work introduced the definition and shows the advan-

tages of obtaining a change-aware metric to evaluate the thorough-

ness of testing altered software while measuring whether it still

possesses its pre-update stability. It is true to say that the technique

focuses on impacted mutants that aim to provide guidance for test

augmentation and evaluation by targeting the changed program

functionality. However, our scientific observation recognizes that

the many of the mutants do not change over time, which is espe-

cially noticeable once the system reaches a certain level of maturity.

Thus, in the current work, we ventured to explore to what extent

the mutants and associated mutant selection can provide accurate

test assessment over a considerably extended period of time - being

diametric to the commit2commit practice we explored so far. We

hypothesize that many mutants become obsolete and offer poor

test assessment, while we envision devising a technique that se-

lects mutants based on their maturity. In particular, these mutants

have the potential to carry the knowledge of dynamic relationships,

tackle departed technical debts and evaluate or keep from break-

ing testing requirements for mature code components. Thus, our

current work defines the notion of long-standing mutants, which

maximize the return of investment put at a given time - provide

test assessment for a prolonged time. In addition to defining the

benefits, we demonstrate that mutants have diverse lifetimes over

project evolution lifetime and demonstrate that efficient selection

of long-standing mutants can provide benefits for at least 10x the

amount of time longer than a random selection.

This line of work is still in progress and is yet to be considered

for publication.

6 CONTRIBUTION TO KNOWLEDGE

To make the mutation testing technique scale and apply its full

fault detection potential in the context of evolving systems, it is

necessary to switch the stance from traditional mutation testing

and pave the way for future research in the direction of continu-

ous integration. Until the present, we witnessed little effort from

the community to tackle the problem, which suggests potential

irrecognition of the benefits. We argue that our work can result in

a thesis dissertation that provides more than one contribution to

the field of mutation testing. First and foremost, our work opens a

new direction toward commit-aware mutation testing. We study

and report on the usage benefits of this approach over traditional

mutation testing and standard random and incremental mutant se-

lection strategies. Additionally, we study the properties and utilities

of commit-relevant mutants aiming to inform researchers about

their predictable nature - hoping that the future direction can result

in a reliable and robust learning selection strategy. In the case of

perfect strategy, we inform on the existence of the minimal subset

of commit-relevant mutants that significantly reduces the complete

number of mutants for change-aware commit testing. Altogether

our works pioneer the change-aware mutation testing criteria.

ACKNOWLEDGMENTS

The author is advised by Prof. Mike Papadakis, who is associate

professor at the University of Luxembourg. This work has been

done under the PayPal project, supported and funded by the SnT -

Interdisciplinary Centre for Security, Reliability and Trust at Uni-

versity of Luxembourg and FNR - Luxembourg National Research

Fund.

1788



Change-Aware Mutation Testing for Evolving Systems ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing

theoretical minimal sets of mutants. In 2014 IEEE seventh international conference
on software testing, verification and validation. IEEE, 21ś30.

[2] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

[3] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608ś624.

[4] Ellen Barbosa, José Maldonado, and Auri Vincenzi. 2001. Toward the determina-
tion of sufficient mutant operators for C. Softw. Test., Verif. Reliab. 11 (06 2001),
113ś136. https://doi.org/10.1002/stvr.226

[5] Mark Anthony Cachia, Mark Micallef, and Christian Colombo. 2013. Towards
incremental mutation testing. Electronic Notes in Theoretical Computer Science
294 (2013), 2ś11.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209ś224.

[7] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: a
mutant generation tool for LLVM. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1080ś1084.

[8] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
2017. An empirical study on mutation, statement and branch coverage fault rev-
elation that avoids the unreliable clean program assumption. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 597ś608.

[9] Marcio Eduardo Delamaro, Lin Deng, Vinicius Humberto Serapilha Durelli, Nan
Li, and Jeff Offutt. 2014. Experimental Evaluation of SDL and One-Op Muta-
tion for C. In 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. 203ś212. https://doi.org/10.1109/ICST.2014.33

[10] The Apache Software Foundation. accessed July 14, 2022. Apache Commons.
https://commons.apache.org/.

[11] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416ś419.

[12] Inc. Free Software Foundation. accessed July 14, 2022. GNU Coreutils shell utility
programs. https://www.gnu.org/software/coreutils/.

[13] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu Chekam,
Mike Papadakis, and Yves Le Traon. 2022. Cerebro: Static Subsuming Mu-
tant Selection. IEEE Transactions on Software Engineering (2022), 1ś1. https:
//doi.org/10.1109/TSE.2022.3140510

[14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654ś665.

[15] Gary Kaminski, Paul Ammann, and Jeff Offutt. 2011. Better Predicate Testing.
In Proceedings of the 6th International Workshop on Automation of Software Test
(Waikiki, Honolulu, HI, USA) (AST ’11). Association for Computing Machinery,
New York, NY, USA, 57ś63. https://doi.org/10.1145/1982595.1982608

[16] Gary Kaminski, Paul Ammann, and Jeff Offutt. 2013. Improving Logic-Based
Testing. J. Syst. Softw. 86, 8 (aug 2013), 2002ś2012. https://doi.org/10.1016/j.jss.
2012.08.024

[17] Samuel J Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing mutants to guide mutation testing. In Proceedings of
the 44th International Conference on Software Engineering. 1743ś1754.

[18] Gene Kim, Patrick Debois, John Willis, and Jez Humble. 2016. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press.

[19] Bob Kurtz, Paul Ammann, Marcio E Delamaro, Jeff Offutt, and Lin Deng. 2014.
Mutant subsumption graphs. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. IEEE, 176ś185.

[20] Bob Kurtz, Paul Ammann, Jeff Offutt, and Mariet Kurtz. 2016. Are We There
Yet? How Redundant and Equivalent Mutants Affect Determination of Test Com-
pleteness. IEEE International Conference on Software Testing, Verification and
Validation, 142ś151. https://doi.org/10.1109/ICSTW.2016.41

[21] Thomas Laurent, Mike Papadakis, Marinos Kintis, Christopher Henard, Yves Le
Traon, and Anthony Ventresque. 2017. Assessing and Improving the Mutation
Testing Practice of PIT. IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST), 430ś435. https://doi.org/10.1109/ICST.2017.47

[22] Wei Ma, Thomas Laurent, Miloš Ojdanić, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2020. Commit-aware mutation testing. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 394ś405.

[23] Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis, Vir-
gile Prevosto, and Loïc Correnson. 2018. Time to Clean Your Test Objectives.
In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (IEEE/ACM International Conference on Software Engi-
neering ’18). Association for Computing Machinery, New York, NY, USA, 456ś467.
https://doi.org/10.1145/3180155.3180191

[24] A.J. Offutt, G. Rothermel, and C. Zapf. 1993. An experimental evaluation of se-
lective mutation. In Proceedings of 1993 15th International Conference on Software
Engineering. 100ś107. https://doi.org/10.1109/ICSE.1993.346062

[25] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Chris-
tian Zapf. 1996. An Experimental Determination of Sufficient Mutant Op-
erators. ACM Trans. Softw. Eng. Methodol. 5, 2 (apr 1996), 99ś118. https:
//doi.org/10.1145/227607.227610

[26] Miloš Ojdanić, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2022. On the use of commit-relevant mutants.
Empirical Software Engineering 27, 5 (2022), 1ś31.

[27] Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and Yves
Le Traon. 2022. Mutation Testing in Evolving Systems: Studying the relevance
of mutants to code evolution. ACM Transactions on Software Engineering and
Methodology (2022).

[28] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275ś378.

[29] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mu-
tation scores correlated with real fault detection? a large scale empirical study
on the relationship between mutants and real faults. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 537ś548.

[30] Goran Petrović and Marko Ivanković. 2018. State of mutation testing at
google. IEEE/ACM International Conference on Software Engineering, 163ś171.
https://doi.org/10.1145/3183519.3183521

[31] Goran Petrović, Marko Ivanković, Bob Kurtz, Paul Ammann, and René Just. 2018.
An industrial application of mutation testing: Lessons, challenges, and research
directions. IEEE International Conference on Software Testing, Verification and
Validation, 47ś53. https://doi.org/10.1109/ICSTW.2018.00027

[32] Akbar Siami Namin and James Andrews. 2006. Finding Sufficient Mutation Op-
erators via Variable Reduction. 2nd Workshop on Mutation Analysis (Mutation
2006 - ISSRE Workshops 2006), MUTATION’06 (11 2006). https://doi.org/10.1109/
MUTATION.2006.7

[33] Akbar Siami Namin, James Andrews, and Duncan Murdoch. 2008. Sufficient
mutation operators for measuring test effectiveness. In 2008 ACM/IEEE 30th In-
ternational Conference on Software Engineering. 351ś360. https://doi.org/10.1145/
1368088.1368136

[34] W.Eric Wong and Aditya P. Mathur. 1995. Reducing the cost of mutation test-
ing: An empirical study. Journal of Systems and Software 31, 3 (1995), 185ś196.
https://doi.org/10.1016/0164-1212(94)00098-0

[35] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent
and Stubborn Mutation Operators Using Human Analysis of Equivalence. In
Proceedings of the 36th International Conference on Software Engineering (Hy-
derabad, India) (IEEE/ACM International Conference on Software Engineering
2014). Association for Computing Machinery, New York, NY, USA, 919ś930.
https://doi.org/10.1145/2568225.2568265

[36] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2019. Predictive Mutation Testing. IEEE Transactions on Software Engineering 45,
9 (2019), 898ś918. https://doi.org/10.1109/TSE.2018.2809496

[37] Lingming Zhang and Darko Marinov. 2012. Regression Mutation Testing. The
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
341.

1789

https://doi.org/10.1002/stvr.226
https://doi.org/10.1109/ICST.2014.33
https://commons.apache.org/
https://www.gnu.org/software/coreutils/
https://doi.org/10.1109/TSE.2022.3140510
https://doi.org/10.1109/TSE.2022.3140510
https://doi.org/10.1145/1982595.1982608
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ICST.2017.47
https://doi.org/10.1145/3180155.3180191
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/MUTATION.2006.7
https://doi.org/10.1109/MUTATION.2006.7
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1016/0164-1212(94)00098-0
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1109/TSE.2018.2809496

	Abstract
	1 Introduction
	2 Background and Related work
	3 Completed Work
	3.1 Commit-Aware Mutation Testing
	3.2 On the Use of Commit-Relevant Mutants
	3.3 Approximating Relevant Mutants with High-Order Mutations
	3.4 Studying Relevance of Mutants to Code-Evolution

	4 Evaluation
	5 Current Work
	6 Contribution to Knowledge
	Acknowledgments
	References

